首页> 外文OA文献 >Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size
【2h】

Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size

机译:猪肝模型中不可逆电穿孔(IRE)后治疗区域的特定CT 3D渲染:“切比雪夫中心概念”定义最大可治疗肿瘤大小

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the “Chebyshev Center Concept” was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin. Methods: In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the “Chebyshev Center Concept” implemented (the “Chebyshev Center” is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position. Results: For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B. Conclusions: Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the “Chebyshev Center Concept” implemented provides significantly different results compared with standard CT 3d analysis. Since the latter overestimates the size of the treatment zone, the “Chebyshev Center Concept” could be used for a more objective acute treatment control.
机译:背景:不可逆电穿孔(IRE)后治疗区域的大小和形状可能难以描绘,因为使用了多个具有复杂空间配置的施药器。但是,对治疗区域的精确几何定义对于急性治疗控制是必不可少的,因为不完全的肿瘤覆盖会导致有限的肿瘤学结果。在这项研究中,针对3D CT渲染引入了“切比雪夫中心概念”,以在特定的安全范围内评估最大可治疗肿瘤的大小和位置。方法:在七个猪肝中,应用了三种不同的IRE方案来创建不同大小和形状的治疗区域:方案1(n = 5 IREs),方案2(n = 5 IREs)和方案3(n = 5 IREs) 。对比增强CT用于评估治疗区域。技术A包括用于CT 3d渲染的半自动软件原型,并实施了“切比雪夫中心概念”(“切比雪夫中心”是治疗区域内最大内切球的中心),并自动定义了尺寸,形状参数和位置。技术B包括标准的CT 3d分析,并手动定义相同的参数但位置。结果:对于方案1和2,技术A和B之间处理区的短直径和处理区内最大内切球的直径无显着差异。对于方案3,处理区的短直径和最大内切球的直径与最大与技术B相比,技术A的治疗区域内的内切球明显较小(41.1±13.1 mm对53.8±1.1 mm和39.0±8.4 mm对53.8±1.1 mm; p <0.05和p <0.01)。对于方案1、2和3,技术A的治疗区域的球形度明显高于技术B。结论:关于IRE后治疗区域的大小和形状,采用“切比雪夫中心概念”的CT 3d渲染提供了显着不同结果与标准CT 3d分析相比。由于后者高估了治疗区的大小,因此“切比雪夫中心概念”可用于更客观的急性治疗控制。

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号